等价无穷小替换公式,有什么等价无穷小替换公式吗?

2022-01-08 10:20:31 百科大全 投稿:一盘搜百科
摘要考研范围内等价无穷小替换公式,等价无穷小的替换公式如下:当x趋近于0时: e^x-1 ~ x;ln(x+1) ~ x;sinx ~ x;arcsinx ~ x;tanx ~ x;arctanx ~

考研范围内等价无穷小替换公式,等价无穷小的替换公式如下:当x趋近于0时: e^x-1 ~ x;ln(x+1) ~ x;sinx ~ x;arcsinx ~ x;tanx ~ x;arctanx ~ x;1-cosx ~ (x^2)/2;tanx-sinx ~ (x^3)/2;(1+bx)^a-1 ~ abx;值得注意的是等价无穷小的替换一般用在乘除中,一般不用在加减运算的替换。无穷小就是以数零为极限的变量。然而常量是变量的特殊一类,就像直线属于曲线的一种。因此常量也是可以当做变量来研究的。这么说来——0是可以作为无穷小的常数。从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式。

等价无穷小替换公式,有什么等价无穷小替换公式吗?插图

baidu “等价无穷小”,一堆一堆的。 当x→0时, sinx~x tanx~x arcsinx~x arctanx~x 1-cosx~(1/2)*(x^2)~secx-1 (a^x)-1~x*lna ((a^x-1)/x~lna) (e^x)-1~x ln(1+x)~x (1+Bx)^a-1~aBx [(1+x)^1/n]-1~(1/n)*x loga(1+x)~x/lna (1+x)^a-1~ax(a≠0) 值得注意的是,等价无穷小一般只能在乘除中替换, 在加减中替换有时会出错(加减时可以整体代换,不能单独代换或分别代换)

等价无穷小替换公式,有什么等价无穷小替换公式吗?插图1

独立的乘积的因子若是无穷小,可以用等价的无穷小替换。例如lim(x→0) sinx*tanx/x^2,这里的sinx,tanx都可以替换,如果是lim(x→0) (sinx-tanx)/x^3,分子的sinx,tanx都不能替换,可以化成lim(x→0) tanx(cosx-1)/x^3后,替换sinx与1-cosx加减项中如果每一项都是无穷小,各自用等价无穷小替换以后得到的结果不是0,则是可以替换的。用泰勒公式求极限就是基于这种思想。 举一个例子让你明白: 求当x→0时,(tanx-sinx)/(x^3)的极限。 用洛必塔法则容易求得这个极限为1/2。 我们知道,当x→0时,tanx~x,sinx~x,若用它们代换,结果等于0,显然错了,这是因为x-x=0的缘故; 而当x→0时,tanx~x+(x^3)/3,sinx~x-(x^3)/6,它们也都是等价无穷小(实际上都是3阶麦克劳林公式),若用它们代换:tanx-sinx~(x^3)/2≠0,就立即可以得到正确的结果。

等价无穷小代换,只要x→∞时,函数内部是无穷小即可。比如,x→∞时,sin(1/x)~1/x。

被代换的量,在取极限的时候极限值为0;被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。

扩展资料:

当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与0无限接近,即f(x)→0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量。特别要指出的是,切不可把很小的数与无穷小量混为一谈。

无穷小量是以0为极限的函数,而不同的无穷小量收敛于0的速度有快有慢。因此两个无穷小量之间又分为高阶无穷小 ,低阶无穷小,同阶无穷小,等价无穷小。

声明:一盘搜百科所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系 88888@qq.com