向量计算,平面向量基本公式是什么?

2022-01-08 09:16:34 百科大全 投稿:一盘搜百科
摘要平面向量基本知识 一、向量知识向量计算: (1) 叫做向量。 (2)向量的运算: 运算 定义 或 法则 运算性质(运算律) 坐标运算 加 法 减 法 实数与向量的积 数量积 几何意义

平面向量基本知识

向量计算,平面向量基本公式是什么?插图

一、向量知识向量计算:

(1) 叫做向量。

(2)向量的运算

运算 定义 或 法则 运算性质(运算律) 坐标运算

加 法

减 法

实数与向量的积

数量积

几何意义:

(3)平面向量的基本定理:

如果 和 是同一平面内的两个不共线的向量,那么

(4)两个向量平行和垂直的充要条件:

‖ ;

(5)夹角、模、距离等计算:

夹角: 与 的夹角

模: | + |= | - |=

| + + |=

模| |= 两点距离公式:|P P |= 向量| |=

计算:求与 =(a,b)共线的单位向量

(6)线段的定比分点坐标公式:

设 ,且 ,则

时,得中点坐标公式: 可推出三角形重心坐标公式:

(7)平移公式

点 按 平移到 ,则

点 点P(a,b) 点

曲线y= 曲线y=f(x) 曲线y=

二、解斜三角形

(1)正弦定理: = =

(2)余弦定理:

(3)S = = =

(4)解三角形的几种类型及步骤:

①已知两角一边: 先用 →再用 。

②已知两边及夹角:先用 →再用 。

③已知两边及一边对角:先用 (注意:解;内角和)

→再用 。

④已知三边:先用 →再用 。

(5)解应用问题的一般步骤:① → ② → ③ → ④

9.平面向量

  (1)平面向量基本定理,如果e1、e2是同一平面内非共线向量,那么该平面内的任一向量a,有且只有一对实数λ1、λ2使a=λ1e1+λ2e2.

  ①两个向量平行的充要条件

  a∥b⇔a=λb

  设a=(x1,y1),b=(x2,y2)

  a∥b=x1x2-y1y2=0

  ②两个非零向量垂直的充要条件

  a⊥b⇔a·b=0

  设a=(x1,y1),b=(x2,y2)

  a⊥b=x1x2+y1y2=0

  θ=〈a,b〉.

  cosθ=x1x2+y1y2/x21+y21

  x22+y22

  (2)数量积的性质:设e是单位向量,〈a,e〉=θ

  ①a·e=e·a=|a|cosθ;②当a,b同向时,a·b=|a||b|,特别地,a2=a·a=|a|2,|a|=;当a与b反向时,a·b=-|a||b|;③a⊥b⇔a·b=0;④非零向量a,b夹角θ的计算公式:cosθ=,当θ为锐角时,a·b>0,且ab不同向,a·b>0是θ为锐角的必要非充分条件;当θ为钝角时,a·b<0,且ab不反向,a·b<0是θ为钝角的必要非充分条件;⑤|a·b|≤|a||b|.

设a=(x,y),b=(x’,y’)。

加法

向量的加法满足平行四边形法则和三角形法则。

向量的加法

OB+OA=OC。

a+b=(x+x’,y+y’)。

a+0=0+a=a。

向量加法的运算律:

交换律:a+b=b+a;

结合律:(a+b)+c=a+(b+c)。减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0AB-AC=CB.即“共同起点,指向被

向量的减法

减”a=(x,y)b=(x’,y’) 则a-b=(x-x’,y-y’).如图:c=a-b 以b的结束为起点,a的结束为终点。数乘实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。当λ>0时,λa与a同方向当λ<0时,λa与a反方向;

向量的数乘

当λ=0时,λa=0,方向任意。当a=0时,对于任意实数λ,都有λa=0。注:按定义知,如果λa=0,那么λ=0或a=0。实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。当λ>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍当λ<1时,表示向量a的有向线段在原方向(λ>0)或××反方向(λ<0)上缩短为原来的∣λ∣倍。数与向量的乘法满足下面的运算律结合律:(λa)·b=λ(a·b)=(a·λb)。向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。[2]需要注意的是:向量的加减乘除运算满足实数加减乘除运算法则。数量积定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量(没有方向),记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉(依定义有:cos〈a,b〉=a·b / |a|·|b|);若a、b共线,则a·b=±∣a∣∣b∣。向量的数量积的坐标表示:a·b=x·x’+y·y’。向量的数量积的运算律a·b=b·a(交换律)(λa)·b=λ(a·b)(关于数乘法的结合律)(a+b)·c=a·c+b·c(分配律)向量的数量积的性质a·a=|a|的平方。a⊥b〈=〉a·b=0。|a·b|≤|a|·|b|。(该公式证明如下:|a·b|=|a|·|b|·|cosα| 因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|)向量的数量积与实数运算的主要不同点1.向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2。2.向量的数量积不满足消去律,即:由a·b=a·c(a≠0),推不出b=c。3.|a·b|与|a|·|b|不等价4.由 |a|=|b| ,不能推出a=b,也不能推出a=-b,但反过来则成立。向量积定义:两个向量a和b的向量积

向量的几何表示

(外积、叉积)是一个向量,记作a×b(这里“×”并不是乘号,只是一种表示方法,与“·”不同,也可记做“∧”)。若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b平行,则a×b=0,a、b垂直,则a×b=|a|*|b|(此处与数量积不同,请注意)。向量积即两个不共线非零向量所在平面的一组法向量。运算法则:运用三阶行列式设a,b,c分别为沿x,y,z轴的单位向量A=(x1,y1,z1)B=(x1,y1,z1)则A*B=a b cx1 y1 z1x1 y1 z1向量的向量积性质:∣a×b∣是以a和b为边的平行四边形面积。a×a=0。a平行b〈=〉a×b=0向量的向量积运算律a×b=-b×a(λa)×b=λ(a×b)=a×(λb)a×(b+c)=a×b+a×c.(a+b)×c=a×c+b×c.上两个分配律分别称为左分配律和右分配律。在演算中应注意不能交换“×”号两侧向量的次序。如:a×(2b)=b×(2a)和c×(a+b)=a×c+b×c都是错误的!注:向量没有除法,“向量AB/向量CD”是没有意义的。

声明:一盘搜百科所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系 88888@qq.com