特征值与特征向量,不同特征值特征向量一定正交吗?
不一定正交特征值与特征向量,如矩阵
A=
[2 3]
[2 1],
它的特征值为-1、4,对应的特征向量为(-1,1)^T,(3,2)^T,显然这两个向量是不正交的
但是一般的,对于任意矩阵,不同特征值对应的特征向量必然线性无关;特别地,对于实对称矩阵,不同特征值对应的特征向量必然正交。
·每一个线性空间都有一个基。
·对一个 n 行 n 列的非零矩阵 A,如果存在一个矩阵 B 使 AB = BA =E(E是单位矩阵),则 A 为非奇异矩阵(或称可逆矩阵),B为A的逆阵。
·矩阵非奇异(可逆)当且仅当它的行列式不为零。
·矩阵非奇异当且仅当它代表的线性变换是个自同构。
·矩阵半正定当且仅当它的每个特征值大于或等于零。
·矩阵正定当且仅当它的每个特征值都大于零。
·解线性方程组的克拉默法则。
·判断线性方程组有无非零实根的增广矩阵和系数矩阵的关系。
线性代数,求特征值和特征向量
特征值 λ = -2, 3, 3,特征向量: (1 0 -1)^T、(3 0 2)^T。
解:
|λE-A| =
|λ-1 -1 -3|
| 0 λ-3 0|
|-2 -2 λ|
|λE-A| = (λ-3)*
|λ-1 -3|
|-2 λ|
|λE-A| = (λ-3)(λ^2-λ-6) = (λ+2)(λ-3)^2
特征值 λ = -2, 3, 3
对于 λ = -2, λE-A =
[-3 -1 -3]
[ 0 -5 0]
[-2 -2 -2]
行初等变换为
[ 1 1 1]
[ 0 1 0]
[ 0 2 0]
行初等变换为
[ 1 0 1]
[ 0 1 0]
[ 0 0 0]
得特征向量 (1 0 -1)^T。
对于重特征值 λ = 3, λE-A =
[ 2 -1 -3]
[ 0 0 0]
[-2 -2 3]
行初等变换为
[ 2 -1 -3]
[ 0 -3 0]
[ 0 0 0]
行初等变换为
[ 2 0 -3]
[ 0 1 0]
[ 0 0 0]
得特征向量 (3 0 2)^T。
答:特征值 λ = -2, 3, 3,特征向量: (1 0 -1)^T、(3 0 2)^T。
扩展资料
特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用
设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。
非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。
矩阵的特征向量是矩阵理论上的重要概念之一,它有着广泛的应用。数学上,线性变换的特征向量(本征向量)是一个非简并的向量,其方向在该变换下不变。该向量在此变换下缩放的比例称为其特征值(本征值)。
特征值与特征向量之间有什么关系
特征值与特征向量之间关系:
1、属于不同特征值的特征向量一定线性无关。
2、相似矩阵有相同的特征多项式,因而有相同的特征值。
3、设x是矩阵a的属于特征值1的特征向量,且a~b,即存在满秩矩阵p使b=p(-1)ap,则y=p(-1)x是矩阵b的属于特征值1的特征向量。
4、n阶矩阵与对角矩阵相似的充分必要条件是:矩阵有n个线性无关的分别属于特征值1,2,3…的特征向量(1,2,3…中可以有相同的值)。
特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立。
扩展资料:
求矩阵的全部特征值和特征向量的方法如下:
第一步:计算的特征多项式;
第二步:求出特征方程的全部根,即为的全部特征值;
第三步:对于的每一个特征值,求出齐次线性方程组。
若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定.反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。
特征空间就是由所有有着相同特征值的特征向量组成的空间,还包括零向量,但要注意零向量本身不是特征向量。
线性变换的主特征向量是最大特征值对应的特征向量。特征值的几何重次是相应特征空间的维数。有限维向量空间上的一个线性变换的谱是其所有特征值的集合。
参考资料来源:搜狗百科——特征值
参考资料来源:搜狗百科——特征向量