多元函数泛函的欧拉公式?

2022-02-04 09:26:38 百科大全 投稿:一盘搜百科
摘要在物理学上,欧拉方程统治刚体的转动,可以选取相对于惯量的主轴坐标为体坐标轴系,这使得计算得以简化,因为我们如今可以将角动量的变化分成分别描述的大小变化和方向变化的部分,并进一步将惯量对角化。在流体动力

在物理学上,欧拉方程统治刚体的转动,可以选取相对于惯量的主轴坐标为体坐标轴系,这使得计算得以简化,因为我们如今可以将角动量的变化分成分别描述的大小变化和方向变化的部分,并进一步将惯量对角化。

多元函数泛函的欧拉公式?插图

在流体动力学中,欧拉方程是一组支配无黏性流体运动的方程,以莱昂哈德·欧拉命名。方程组各方程分别代表质量守恒(连续性)、动量守恒及能量守恒,对应零黏性及无热传导项的纳维-斯托克斯方程。

历史上,只有连续性及动量方程是由欧拉所推导的。然而,流体动力学的文献常把全组方程——包括能量方程——称为“欧拉方程”。跟纳维-斯托克斯方程一样,欧拉方程一般有两种写法:“守恒形式”及“非守恒形式”。守恒形式强调物理解释,即方程是通过一空间中某固定体积的守恒定律;而非守恒形式则强调该体积跟流体运动时的变化状态。

欧拉方程可被用于可压缩性流体,同时也可被用于非压缩性流体——这时应使用适当的状态方程,或假设流速的散度为零。本条目假设经典力学适用;当可压缩流的速度接近光速时,详见相对论性欧拉方程。

余弦函数的欧拉公式表达式?

正弦信号、余弦信号与复指数信号(欧拉公式)

生活中不存在复数,但是《信号与系统》《数字信号处理》偏偏离不开复指数 e(jwt),这就涉及到复指数在推导和运算时的一些重要性质,以及其与正弦余弦信号的关系。

1. 可用复指数信号表示正弦/余弦信号

当指数信号的指数因子是复数时,称之为复指数信号。其表达式为 f(t)=Kest,s=σ+jw。

根据欧拉公式,一个复指数信号可以分为实部和虚部两部分(eiθ=cosθ+isinθ)。实部包含余弦信号,虚部则是正弦信号。

{eiθ=cosθ+isinθe−iθ=cosθ−isinθ⇒⎧⎩⎨⎪⎪⎪⎪⎪⎪cosθ=eiθ+e−iθ2sinθ=eiθ−e−iθ2i

且有:

|ejwt|=cos2+sin2=1

2. 复指数信号

如果我们对一个系统输入复指数信号,输出必定也是复指数信号,根据复数相等实部实部相等、虚部虚部相等的原则,那么输出的实部与输入的实部:cos(wt)相对应;输出的虚部与输入的虚部:sin(wt)相对应。

这有一个好处:输入一个复指数函数就同时解决了系统输出的振幅和相位的问题:因为输出的振幅等于响应实部的平方与虚部的平方和的开方;而输出的相位等于响应虚部与实部的比值的反正切。对于线性控制系统输入是正弦的输出也是正弦的,且周期不变。

谁能完美的解释一下欧拉恒等式

申明,这是网上搜索而来!

欧拉恒等式

  欧拉恒等式是指下列的关系式:e^iπ + 1 = 0,其中e是自然指数的底,i是虚数单位,π是圆周率,它把5个最基本的数学常数简洁地连系了起来,因而被称为“数学最奇妙的公式”。

欧拉恒等式

欧拉恒等式是指下列的关系式:

e^iπ + 1 = 0 其中e是自然指数的底,i是虚数单位,π是圆周率。

这条恒等式第一次出现于1748年欧拉在洛桑出版的书Introductio。

这是复分析的欧拉公式的特例:对任何实数x,e^ix = cosx + isinx 作代入x = π即给出恒等式。

理查德·费曼称这恒等式为“数学最奇妙的公式”,因为它把5个最基本的数学常数简洁地连系起来。

这个等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数学联系到了一起:两个超越数:自然对数的底e,圆周率π,两个单位:虚数单位i和自然数的单位1,以及数学里常见的0。

数学家们评价它是“上帝创造的公式”,我们只能看它而不能理解它。

声明:一盘搜百科所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系 88888@qq.com