Richardson外推公式,伯努利方程的公式是什么?
伯努利方程:p+ρgz+(1/2)*ρv^2=C 式中p、ρ、v分别为流体的压强、密度和速度;h为铅垂高度;g为重力加速度;c为常量Richardson外推公式。
一个直接的结论就是:流速高处压力低,流速低处压力高。拓展资料: 丹尼尔·伯努利在1726年首先提出:“在水流或气流里,如果速度小,压强就大;如果速度大,压强就小”。我们称之为“伯努利原理”。我们拿着两张纸,往两张纸中间吹气,会发现纸不但不会向外飘去,反而会被一种力挤压在了一起;因为两张纸中间的空气被我们吹得流动的速度快,压力就小,而两张纸外面的空气没有流动,压力就大,所以外面力量大的空气就把两张纸“压”在了一起。这就是“伯努利原理”原理的简单示范。
迈克尔逊干涉仪计算公式?
根据等倾干涉从中间数起第N个亮条纹的条纹半径公式:rN=(f/n0)*(√(nλ/h)*√(N-1+ε))。其中rN是半径,N是从中心向外数第N个圆环的数量,f是透镜焦距,n0是空气折射率等于1,n是介质折射率,这里是空气介质所以也是1,λ是波长,h是介质厚度,ε是中心不是亮纹的时候的修正数,如果中心是亮斑认为这个值是0。根号从紧挨的第一个括号到这个括号结束!
由此可以看出,条纹半径和厚度h呈反比的,也就是说,厚度越小,从中心向外的第N个圆环半径越大,条纹越稀疏。(你想像一下,比如原来半径是10cm的光屏可以现实N个条纹,当h变小了以后,其他不变,要显示同样的N个条纹却需要更大的半径,比如20cm,当然是10cm显示N条密集,20cm显示N条要稀疏的多了!)所以厚度越小接近0的过程中条纹越来越稀疏直到没有光程差的时候,没有条纹!
所以综上,间距小的d(就是公式里面的h),条纹间距反而大,条纹稀疏。
2,两条粗大的,说明间隔d太小了,以至于只能显示两级!
设计计算圆周率的外推公式并实现
1、马青公式
π=16arctan1/5-4arctan1/239
这个公式由英国天文学教授约翰·马青于1706年发现。他利用这个公式计算到了100位的圆周率。马青公式每计算一项可以得到1.4位的十进制精度。因为它的计算过程中被乘数和被除数都不大于长整数,所以可以很容易地在计算机上编程实现。
还有很多类似于马青公式的反正切公式。在所有这些公式中,马青公式似乎是最快的了。虽然如此,如果要计算更多的位数,比如几千万位,马青公式就力不从心了。下面介绍的算法,在PC机上计算大约一天时间,就可以得到圆周率的过亿位的精度。这些算法用程序实现起来比较复杂。因为计算过程中涉及两个大数的乘除运算,要用FFT(Fast Fourier Transform)算法。FFT可以将两个大数的乘除运算时间由O(n2)缩短为O(nlog(n))。
2、拉马努金公式
1914年,印度数学家拉马努金在他的论文里发表了一系列共14条圆周率的计算公式。这个公式每计算一项可以得到8位的十进制精度。1985年Gosper用这个公式计算到了圆周率的17,500,000位。
1989年,大卫·丘德诺夫斯基和格雷高里·丘德诺夫斯基兄弟将拉马努金公式改良,这个公式被称为丘德诺夫斯基公式,每计算一项可以得到15位的十进制精度。1994年丘德诺夫斯基兄弟利用这个公式计算到了4,044,000,000位。丘德诺夫斯基公式的另一个更方便于计算机编程的形式是:
3、AGM(Arithmetic-Geometric Mean)算法
高斯-勒让德公式:
这个公式每迭代一次将得到双倍的十进制精度,比如要计算100万位,迭代20次就够了。1999年9月,日本的高桥大介和金田康正用这个算法计算到了圆周率的206,158,430,000位,创出新的世界纪录。
4、波尔文四次迭代式:
这个公式由乔纳森·波尔文和彼得·波尔文于1985年发表,它四次收敛于圆周率。
5、bailey-borwein-plouffe算法
这个公式简称BBP公式,由David Bailey, Peter Borwein和Simon Plouffe于1995年共同发表。它打破了传统的圆周率的算法,可以计算圆周率的任意第n位,而不用计算前面的n-1位。这为圆周率的分布式计算提供了可行性。1997年,白劳德找到了一个比BBP快40%的公式:
Pi/4=1-1/3+1/5-1/7+…….
A=1/5-1/3/5^3+1/5/5^5-1/7/5^7+1/9/5^9-1/11/5^11+….
B=1/239-1/3/239^3+1/5/238^5-1/7/239^7+1/9/239^9-1/11/239^11+…
Pi/4=4A-B