强引蜘蛛代码python,Python爬虫如何写?
Python的爬虫库其实很多强引蜘蛛代码python,像常见的urllib,requests,bs4,lxml等,初始入门爬虫的话,可以学习一下requests和bs4(BeautifulSoup)这2个库,比较简单,也易学习,requests用于请求页面,BeautifulSoup用于解析页面,下面我以这2个库为基础,简单介绍一下Python如何爬取网页静态数据和网页动态数据,实验环境win10+python3.6+pycharm5.0,主要内容如下:
Python爬取网页静态数据这个就很简单,直接根据网址请求页面就行,这里以爬取糗事百科上的内容为例:
1.这里假设我们要爬取的文本内容如下,主要包括昵称、内容、好笑数和评论数这4个字段:
打开网页源码,对应网页结构如下,很简单,所有字段内容都可以直接找到:
2.针对以上网页结构,我们就可以编写相关代码来爬取网页数据了,很简单,先根据url地址,利用requests请求页面,然后再利用BeautifulSoup解析数据(根据标签和属性定位)就行,如下:
程序运行截图如下,已经成功爬取到数据:
Python爬取网页动态数据很多种情况下,网页数据都是动态加载的,直接爬取网页是提取不到任何数据的,这时就需要抓包分析,找到动态加载的数据,一般情况下就是一个json文件(当然,也可能是其他类型的文件,像xml等),然后请求解析这个json文件,就能获取到我们需要的数据,这里以爬取人人贷上面的散标数据为例:
1.这里假设我们爬取的数据如下,主要包括年利率,借款标题,期限,金额,进度这5个字段:
2.按F12调出开发者工具,依次点击“Network”->“XHR”,F5刷新页面,就可以找到动态加载的json文件,具体信息如下:
3.接着,针对以上抓包分析,我们就可以编写相关代码来爬取数据了,基本思路和上面的静态网页差不多,先利用requests请求json,然后再利用python自带的json包解析数据就行,如下:
程序运行截图如下,已经成功获取到数据:
至此,我们就完成了利用python来爬取网页数据。总的来说,整个过程很简单,requests和BeautifulSoup对于初学者来说,非常容易学习,也易掌握,可以学习使用一下,后期熟悉后,可以学习一下scrapy爬虫框架,可以明显提高开发效率,非常不错,当然,网页中要是有加密、验证码等,这个就需要自己好好琢磨,研究对策了,网上也有相关教程和资料,感兴趣的话,可以搜一下,希望以上分享的内容能对你上有所帮助吧,也欢迎大家评论、留言。
Python什么爬虫库好用?
Python下的爬虫库,一般分为3类。
抓取类
urllib(Python3),这是Python自带的库,可以模拟浏览器的请求,获得Response用来解析,其中提供了丰富的请求手段,支持Cookies、Headers等各类参数,众多爬虫库基本上都是基于它构建的。建议学习了解一下,因为有些罕见的问题需要通过底层的方式解决。
requests,基于urllib,但是更方便易用。强烈推荐掌握。
解析类
re:正则表达式官方库,不仅仅是学习爬虫要使用,在其他字符串处理或者自然语言处理的过程中,这是绕不过去的一个库,强烈推荐掌握。
BeautifulSoup:方便易用,好上手,推荐掌握。通过选择器的方式选取页面元素,并获取对应的内容。
lxml:使用
lxml.etree
将字符串转换之后,我们可以使用XPath表达式来解析网页,终极推荐。XPath对于网页解析的支持非常强大,而且很容易上手。它本来是设计出来进行XML元素选择的,但是它同样支持HTML。
pyquery:另一个强大的解析库,感兴趣的可以学习下。
综合类
selenium:所见即所得式爬虫,综合了抓取和解析两种功能,一站式解决。很多动态网页不太容易通过requests、scrapy直接抓取,比如有些url后边带了加密的随机数,这些算法不太好破解,这种情况下,只能通过直接访问网址、模拟登陆等方式请求到页面源码,直接从网页元素中解析内容,这种情况下,Selenium就是最好的选择。不过Selenium最初设计出来,是用于测试的。强烈推荐。
scrapy:另一个爬虫神器,适合爬取大量页面,甚至对分布式爬虫提供了良好的支持。强烈推荐。
以上这些是我个人经常使用的库,但是还有很多其他的工具值得学习。比如Splash也支持动态网页的抓取;Appium可以帮助我们抓取App的内容;Charles可以帮助我们抓包,不管是移动端还是PC网页端,都有良好的支持;pyspider也是一个综合性的框架;MySQL(pymysql)、MongoDB(pymongo),抓到了数据就要存储,数据库也是绕不过去的。
掌握了以上这些,基本上大部分的爬虫任务都难不倒你啦!
你也可以关注我的头条号,或者我的个人博客,里边会有一些爬虫类的分享。数洞: /