梯形求积公式的余项怎么推(推导梯形公式的余项)
1、?求积公式梯形公式的余项是怎么来的。
2、梯形求积公式的余项怎么推。
3、梯形公式的余项是什么。
4、梯形公式余项公式证明。
以下内容关于《求积公式梯形公式的余项是怎么来?》的解答。
1.复合求积公式Nweton—Cotes公式的求积余项表明,求积节点n越大,对应的求积公式精度越高,但由于Nweton—Cotes公式在n&。
2.gt。
3.8时数值不稳定,因此不能用增加求积节点数的方法来提高计算精度。
4.实用中常将求积区间[a,b]分成若干个小区间,然后在每个小区间上采用数值稳定的Nweton—Cotes公式求小区间上的定积分,第三把所有小区间上的计算结果相加来作为原定积分的近似值。
5.??采用这种方法构造的求积公式就称为复合求积公式。
6.复合求积公式具有计算简单且可以任意逼近所求定积分值的特点,这是Nweton—Cotes公式一般做不到的。
7.常用的复合求积公式有复合梯形公式和复合Simpson公式。
8.①复合梯形公式取等距节点xk=a+。
9.kh,h=(b-a)/n,k=0,1,。
10.??。
11.。
12.。
13.,n将积分区间[a,b]n等分,在每个小区间[xk,xk+。
14.1]k=0,1,。
15.。
16.。
17.n-1上用梯形公式做近似计算,就有得求积公式(15)是称为复合梯形公式。
18.通常记(15)的右端为它称为T形值。
19.??因为故复合梯形公式的求积余项为如果|f&。
20.#34。
21.(x)|≤M由于a,b是有限数,故若给定计算精度ξ,由(16),令即只要取h满足(17),及n=(b-a)/h,利用复合求积公式(15)计算,就能得到计算误差小于ξ的定积分近似值。
22.??②复合Simpson公式取[a,b]上的等距节点xk=a+。
23.kh,h=(b-a)/n,k=0,1,。
24.。
25.。
26.n,将[a,b]n等分,在每个小区间[xk,xk+。
27.1]上用Simpson公式做近似计算,就有式中xk+。
28.1/2=xk+。
29.h/于是求得下面复合Simpson公式:利用Simpson公式的求积余项,可以得到复合Simpson公式的求积余项为:从复合Simpson公式的求积余项可以看出复合Simpson公式比复合梯形公式好,不过前者计算量大些。
30.??复合Simpson公式也称为复合抛物线公式。
31.采用如上构造复合求积公式的方法可以构造出其他类型的复合求积公式,如复合Cotes公式等。
32.实际上复合求积公式本质上是用在求积节点上的分段插值函数代替被积函数f(x)获得求积公式,所以它们归为插值型求积公式,如复合梯形公式是用分段型插值函数取代f(x)参和积分,复合Simpson公式是用分段二次插值函数取代f(x)参和积分等。