指数与对数的转换公式,指数和对数的恒等变形公式?

2022-01-09 17:00:07 百科大全 投稿:一盘搜百科
摘要指数对数互换公式:a^y=x→y。在数学中指数与对数的转换公式,对数是对求幂的逆运算,正如除法是乘法的倒数,反之亦然。这意味着一个数字的对数是必须产生另一个固定数字(基数)的指数。在简单的情况下,乘数

指数对数互换公式:a^y=x→y。在数学中指数与对数的转换公式,对数是对求幂的逆运算,正如除法是乘法的倒数,反之亦然。这意味着一个数字的对数是必须产生另一个固定数字(基数)的指数。在简单的情况下,乘数中的对数计数因子。

指数与对数的转换公式,指数和对数的恒等变形公式?插图

基数(cardinal number)在数学上,是集合论中刻画任意集合大小的一个概念。两个能够建立元素间一一对应的集合称为互相对等集合。

对数恒等式:alogaN = N(a>0,a≠1,N>0).注明:第一个a是底,它后面的logaN是它的指数.换底公式:log(a)(b)表示以a为底的b的对数.所谓的换底公式就是 log(a)(b)=log(n)(b)/log(n)(a)

1对数的概念

如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数.

由定义知:

①负数和零没有对数;

②a>0且a≠1,N>0;

③loga1=0,logaa=1,alogaN=N,logaab=b.

特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN.

2对数式与指数式的互化

式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数)

3对数的运算性质

如果a>0,a≠1,M>0,N>0,那么

(1)loga(MN)=logaM+logaN.

(2)logaMN=logaM-logaN.

(3)logaMn=nlogaM (n∈R).

问:①公式中为什么要加条件a>0,a≠1,M>0,N>0?

②logaan=? (n∈R)

③对数式与指数式的比较.(学生填表)

式子ab=NlogaN=b名称a—幂的底数

b—

N—a—对数的底数

b—

N—运

质am·an=am+n

am÷an=

(am)n=

(a>0且a≠1,n∈R)logaMN=logaM+logaN

logaMN=

logaMn=(n∈R)

(a>0,a≠1,M>0,N>0)

难点疑点突破

对数定义中,为什么要规定a>0,,且a≠1?

理由如下:

①若a<0,则N的某些值不存在,例如log-28

②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数

③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数

为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数

解题方法技巧

1

(1)将下列指数式写成对数式:

①54=625;②2-6=164;③3x=27;④13m=573.

(2)将下列对数式写成指数式:

①log1216=-4;②log2128=7;

③log327=x;④lg0.01=-2;

⑤ln10=2.303;⑥lgπ=k.

解析由对数定义:ab=NlogaN=b.

解答(1)①log5625=4.②log2164=-6.

③log327=x.④log135.73=m.

解题方法

指数式与对数式的互化,必须并且只需紧紧抓住对数的定义:ab=NlogaN=b.(2)①12-4=16.②27=128.③3x=27.

④10-2=0.01.⑤e2.303=10.⑥10k=π.

2

根据下列条件分别求x的值:

(1)log8x=-23;(2)log2(log5x)=0;

(3)logx27=31+log32;(4)logx(2+3)=-1.

解析(1)对数式化指数式,得:x=8-23=?

(2)log5x=20=1. x=?

(3)31+log32=3×3log32=?27=x?

(4)2+3=x-1=1x. x=?

解答(1)x=8-23=(23)-23=2-2=14.

(2)log5x=20=1,x=51=5.

(3)logx27=3×3log32=3×2=6,

∴x6=27=33=(3)6,故x=3.

(4)2+3=x-1=1x,∴x=12+3=2-3.

解题技巧

①转化的思想是一个重要的数学思想,对数式与指数式有着密切的关系,在解决有关问题时,经常进行着两种形式的相互转化.

②熟练应用公式:loga1=0,logaa=1,alogaM=M,logaan=n.3

已知logax=4,logay=5,求A=〔x·3x-1y2〕12的值.

解析思路一,已知对数式的值,要求指数式的值,可将对数式转化为指数式,再利用指数式的运算求值;

思路二,对指数式的两边取同底的对数,再利用对数式的运算求值

解答解法一∵logax=4,logay=5,

∴x=a4,y=a5,

∴A=x512y-13=(a4)512(a5)-13=a53·a-53=a0=1.

解法二对所求指数式两边取以a为底的对数得

logaA=loga(x512y-13)

=512logax-13logay=512×4-13×5=0,

∴A=1.

解题技巧

有时对数运算比指数运算来得方便,因此以指数形式出现的式子,可利用取对数的方法,把指数运算转化为对数运算.4

设x,y均为正数,且x·y1+lgx=1(x≠110),求lg(xy)的取值范围.

解析一个等式中含两个变量x、y,对每一个确定的正数x由等式都有惟一的正数y与之对应,故y是x的函数,从而lg(xy)也是x的函数.因此求lg(xy)的取值范围实际上是一个求函数值域的问题,怎样才能建立这种函数关系呢?能否对已知的等式两边也取对数?

解答∵x>0,y>0,x·y1+lgx=1,

两边取对数得:lgx+(1+lgx)lgy=0.

即lgy=-lgx1+lgx(x≠110,lgx≠-1).

令lgx=t, 则lgy=-t1+t(t≠-1).

∴lg(xy)=lgx+lgy=t-t1+t=t21+t.

解题规律

对一个等式两边取对数是解决含有指数式和对数式问题的常用的有效方法;而变量替换可把较复杂问题转化为较简单的问题.设S=t21+t,得关于t的方程t2-St-S=0有实数解.

∴Δ=S2+4S≥0,解得S≤-4或S≥0,

故lg(xy)的取值范围是(-∞,-4〕∪〔0,+∞).

5

求值:

(1)lg25+lg2·lg50+(lg2)2;

(2)2log32-log3329+log38-52log53;

(3)设lga+lgb=2lg(a-2b),求log2a-log2b的值;

(4)求7lg20·12lg0.7的值.

解析(1)25=52,50=5×10.都化成lg2与lg5的关系式.

(2)转化为log32的关系式.

(3)所求log2a-log2b=log2ab由已知等式给出了a,b之间的关系,能否从中求出ab的值呢?

(4)7lg20·12lg0.7是两个指数幂的乘积,且指数含常用对数,

设x=7lg20·12lg0.7能否先求出lgx,再求x?

解答(1)原式=lg52+lg2·lg(10×5)+(lg2)2

=2lg5+lg2·(1+lg5)+(lg2)2

=lg5·(2+lg2)+lg2+(lg2)2

=lg102·(2+lg2)+lg2+(lg2)2

=(1-lg2)(2+lg2)+lg2+(lg2)2

=2-lg2-(lg2)2+lg2+(lg2)2=2.

(2)原式=2log32-(log325-log332)+log323-5log59

=2log32-5log32+2+3log32-9

=-7.

(3)由已知lgab=lg(a-2b)2 (a-2b>0),

∴ab=(a-2b)2, 即a2-5ab+4b2=0.

∴ab=1或ab=4,这里a>0,b>0.

若ab=1,则a-2b<0, ∴ab=1( 舍去).

∴ab=4,

∴log2a-log2b=log2ab=log24=2.

(4)设x=7lg20·12lg0.7,则

lgx=lg20×lg7+lg0.7×lg12

=(1+lg2)·lg7+(lg7-1)·(-lg2)

=lg7+lg2=14,

∴x=14, 故原式=14.

解题规律

①对数的运算法则是进行同底的对数运算的依据,对数的运算法则是等式两边都有意义的恒等式,运用法则进行对数变形时要注意对数的真数的范围是否改变,为防止增根所以需要检验,如(3).

②对一个式子先求它的常用对数值,再求原式的值是代数运算中常用的方法,如(4).6

声明:一盘搜百科所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系 88888@qq.com