闭区间套定理,零点定理主要用来证明什么?

2022-01-09 16:48:11 百科大全 投稿:一盘搜百科
摘要用来证明存在一个值使所求函数等于零闭区间套定理。设函数f(x)在闭区间[a,b]上连续,且f(a)与 f(b)异号(即f(a)× f(b)<0),那么在开区间(a,b)内至少有函数f(x)的一个零点,

用来证明存在一个值使所求函数等于零闭区间套定理

闭区间套定理,零点定理主要用来证明什么?插图

设函数f(x)在闭区间[a,b]上连续,且f(a)与 f(b)异号(即f(a)× f(b)<0),那么在开区间(a,b)内至少有函数f(x)的一个零点,即至少有一点ξ(a<ξ<b)使f(ξ)=0。

证明:不妨设f(a)<0,f(b)>0.令

E={x|f(x)<0,x∈[a,b]}.

由f(a)<0知E≠Φ,且b为E的一个上界,于是根据确界存在原理,

存在ξ=supE∈[a,b].

下证f(ξ)=0(注意到f(a)≠0,f(b)≠0,故此时必有ξ∈(a,b).).事实上,

(i)若f(ξ)<0,则ξ∈[a,b).由函数连续的局部保号性知

存在δ>0,对x1∈(ξ,ξ+δ):f(x)<0→存在x1∈E:x1>supE,

这与supE为E的上界矛盾;

(ii)若f(ξ)>0,则ξ∈(a,b].仍由函数连续的局部保号性知

存在δ>0,对x1∈(ξ-δ,ξ):f(x)>0→存在x1为E的一个上界,且x1<ξ,

这又与supE为E的最小上界矛盾。

综合(i)(ii),即推得f(ξ)=0。

我们还可以利用闭区间套定理来证明零点定理。

闭区间套定理或者更高维的闭球套定理常常用来证明或者说明某个空间(集合)具有一种“稠密”的性质。在这个空间中构造出一列(无穷多个)闭球,使这些闭球一个比一个更小而且后一个总被套在前一个里面,目的是使得这列闭球的直径最终趋于零,即无限小,这时候,“最里面”的闭球要么是一个点要么是空集,如果最里面的闭球是一个点,那么这个点必定包含于所有的这一列闭球,我们就说这个空间具有这种“稠密”的性质;反之,如果这个空间具有“稠密的”性质,必定可以构造出一列直径越来越小最终为无穷小的闭球套,它们有唯一的公共点!

TAGS: 定理  间套  函数  零点  开区  用来  证明  一个  
声明:一盘搜百科所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系 88888@qq.com