人教版数学上册1-6年级期中知识点
01
一年级
第一单元 准备课
1、数一数
数数:数数时,按一定的顺序数,从1开始,数到最后一个物体所对应的那个数,即最后数到几,就是这种物体的总个数。
2、比多少
同样多:当两种物体一一对应后,都没有剩余时,就说这两种物体的数量同样多。
比多少:当两种物体一一对应后,其中一种物体有剩余,有剩余的那种物体多,没有剩余的那种物体少。
比较两种物体的多或少时,可以用一一对应的方法。
第二单元 位置
1、认识上、下
体会上、下的含义:从两个物体的位置理解:上是指在高处的物体,下是指在低处的物体。
2、认识前、后
体会前、后的含义:一般指面对的方向就是前,背对的方向就是后。
同一物体,相对于不同的参照物,前后位置关系也会发生变化。
从而得出:确定两个以上物体的前后位置关系时,要找准参照物,选择的参照物不同,相对的前后位置关系也会发生变化。
3、 认识左、右
以自己的左手、右手所在的位置为标准,确定左边和右边。右手所在的一边为右边,左手所在的一边为左边。
要点提示:在确定左右时,除特殊要求,一般以观察者的左右为准。
第三单元 1-5的认识和加减法
一、 1--5的认识
1、1—5各数的含义:每个数都可以表示不同物体的数量。有几个物体就用几来表示。
2、1—5各数的数序
从前往后数:1、2、3、4、5.
从后往前数:5、4、3、2、1.
3、1—5各数的写法:根据每个数字的形状,按数字在田字格中的位置,认真、工整地进行书写。
二、比大小
1、前面的数等于后面的数,用“=”表示,即3=3,读作3等于3。前面的数大于后面的数,用“>”表示,即3>2,读作3大于2。前面的数小于后面的数,用“<”表示,即3<4,读作3小于4。
2、填“>”或“<”时,开口对大数,尖角对小数。
三、第几
1、确定物体的排列顺序时,先确定数数的方向,然后从1开始点数,数到几,它的顺序就是“第几”。第几指的是其中的某一个。
2、区分“几个”和“第几”
“几个”表示物体的多少,而“第几”只表示其中的一个物体。
四、分与合
数的组成:一个数(1除外)分成几和几,先把这个数分成1和几,依次分到几和1为止。例如:5的组成有1和4,2和3,3和2,4和1.
把一个数分成几和几时,要有序地进行分解,防止重复或遗漏。
五、加法
1、加法的含义:把两部分合在一起,求一共有多少,用加法计算。
2、加法的计算方法:计算5以内数的加法,可以采用点数、接着数、数的组成等方法。其中用数的组成计算是最常用的方法。
六、减法
1、减法的含义:从总数里去掉(减掉)一部分,求还剩多少用减法计算。
2、减法的计算方法:计算减法时,可以用倒着数、数的分成、想加算减的方法来计算。
七、0
1、0的意义:0表示一个物体也没有,也表示起点。
2、0的读法:0读作:零
3、0的写法:写0时,要从上到下,从左到右,起笔处和收笔处要相连,并且要写圆滑,不能有棱角。
4、0的加、减法:任何数与0相加都得这个数,任何数与0相减都得这个数,相同的两个数相减等于0.
如:0+8=8 9-0=9 4-4=0
第四单元 认识图形
1、长方体的特征:长长方方的,有6个平平的面,面有大有小。
如图:
2、正方体的特征:四四方方的,有6个平平的面,面的大小一样。
如图:
3、圆柱的特征:直直的,上下一样粗,上下两个圆面大小一样。放在桌子上能滚动。立在桌子上不能滚动。
如图:
4、球的特征:圆圆的,很光滑,它的表面是曲面。放在桌子上能向任意方向滚动。
5、立体图形的拼摆:用长方体或正方体能拼组出不同形状的立体图形,在拼好的立体图形中,有一些部位从一个角度是看不到的,要从多个角度去观察。用小圆柱可以拼成更大的圆柱。
02
二年级
第一单元 长度单位
1、常用的长度单位:米、厘米。
2、测量较短物体通常用厘米作单位,测量较长物体通常用米作单位。
3、测量物体长度的方法:将物体的左端对准直尺的“0”刻度,看物体的右端对着直尺上的刻度是几,这个物体的长度就是几厘米。
4、米和厘米的关系:1米=100厘米 100厘米=1米
5、线段
⑴线段的特点:①线段是直的;②线段有两个端点;③线段有长有短,是可以量出长度的
⑵画线段的方法:先用笔对准尺子的’0”刻度,在它的上面点一个点,再对准要画到的长度的厘米刻度,在它的上面也点一个点,然后把这两个点连起来,写出线段的长度
⑶测量物体的长度时,当不是从“0”刻度量起时,要用终点的刻度数减去起点的刻度数。
6、填上合适的长度单位。
小明身高1(米)30(厘米)
练习本宽13(厘米)
铅笔长17(厘米)
黑板长2(米)
图钉长1(厘米)
一张床长2(米)
一口井深3(米)
学校进行100(米)赛跑
教学楼高25(米)
宝宝身高80(厘米)
跳绳长2(米)
一棵树高3(米)
一把钥匙长5(厘米)
一个文具盒长24(厘米)
讲台高90(厘米)
门高2(米)
教室长12(米)
筷子长20(厘米)
一棵小树苗高1(米)
小朋友的头围48厘米
爸爸的身高1米75厘米或175厘米
小朋友的身高120厘米或1米20厘米
第二单元 100以内加减法
一、两位数加两位数
1、两位数加两位数不进位加法的计算法则:
把相同数位对齐列竖式,在把相同数位上的数相加。
2、两位数加两位数进位加法的计算法则:
①相同数位对齐;
②从个位加起;
③个位满十向十位进1。
3、笔算两位数加两位数时,相同数位要对齐,从个位加起,个位满十要向十位进“1”,十位上的数相加时,不要遗漏进上来的“1”。
4、和=加数+加数 一个加数=和-另一个加数
二、两位数减两位数
1、两位数减两位数不退位减的笔算:相同数位对齐列竖式,再把相同数位上的数相减。
2、两位数减两位数退位减的笔算法则:
①相同数位对齐;
②从个位减起;
③个位不够减,从十位退1,在个位上加10再减。
3、笔算两位数减两位数时,相同数位要对齐,从个位减起,个位不够减,从十位退1,个位加10再减,十位计算时要先减去退走的1再算。
4、差=被减数-减数
被减数=减数+差
减数=被减数-差
三、连加、连减和加减混合
1、连加、连连加、连减的笔算顺序和连加、连减的口算顺序一样,都是从左往右依次计算。
①连加计算可以分步计算,也可以写成一个竖式计算,计算方法与两个数相加一样,都要把相同数位对齐,从个位加起。
②连减运算可以分步计算,也可以写成一个竖式计算,计算方法与两个数相减一样,都要把相同数位对齐,从个位减起。
2、加减混加、减混合算式,其运算顺序、竖式写法都与连加、连减相同。3、加减混合运算写竖式时可以分步计算,方法与两个数相加(减)一样,要把相同数位对齐,从个位算起;也可以用简便的写法,列成一个竖式,先完成第一步计算,再用第一步的结果加(减)第二个数。
四、解决问题(应用题)
1、步骤:
①先读题
②列横式,写结果,千万别忘记写单位(单位为:多少或者几后面的那个字或词)
③作答。
2、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算。用“比”字两边的较大数减去较小数。
3、比一个数多几、少几,求这个数的问题。先通过关键句分析,“比”字前面是大数还是小数,“比”字后面是大数还是小数,问题里面要求大数还是小数,求大数用加法,求小数用减法。
4、关于提问题的题目,可以这样提问:
①…….和……一共…….?
②……比……..多多少/几……?
③……比……..少多少/几……?
第三单元 角的初步认识
1、角的初步认识
(1)角是由一个顶点和两条边组成的;
(2)画角的方法:从一个点起,用尺子向不同的方向画两条直线。
(3)角的大小与边的长短没有关系,与角的两条边张开的大小有关,角的两条边张开得越大,角就越大,角的两条边张开得越小,角就越小。2、直角的初步认识
(1)直角的判断方法:用三角尺上的直角比一比(顶点对顶点,一边对一边,再看另一条边是否重合)。
(2)画直角的方法:
①先画一个顶点,再从这个点出发画一条直线
②用三角尺上的直角顶点对齐这个点,一条直角边对齐这条线
③再从这点出发沿着三角尺上的另一条直角边画一条线
④最后标出直角标志。
(3)比直角小的是锐角,比直角大的是钝角:锐角<直角<钝角。
(4)所有的直角都一样大
(5)每个三角尺上都有1个直角,两个锐角。红领巾上有3个角,其中一个是钝角,两个是锐角。一个长方形中和正方形中都是有4个直角。
第四、六单元 表内乘法(一)(二)
1、乘法的含义
乘法是求几个相同加数连加的和的简便算法。如:计算:2+2+2=6,用乘法算就是:2×3=6或3×2=6.
2、乘法算式的写法和读法
⑴连加算式改写为乘法算式的方法。求几个相同加数的和,可以用乘法计算。写乘法算式时,可以用乘法计算。写乘法算式时,可以先写相同的加数,然后写乘号,再写相同加数的个数,最后写等号与连加的和;也可以先写相同加数的个数,然后写乘号,再写相同加数,最后写等号与连加的和。
如:4+4+4=12改写成乘法算式是4×3=12或3×4=12
⑵乘法算式的读法。读乘法算式时,要按照算式顺序来读。如:6×3=18读作:“6乘3等于18”。
3、乘法算式中各部分的名称及实际表示的意义
在乘法算式里,乘号前面的数和乘号后面的数都叫做“乘数”;等号后面的得数叫做“积”。
4、乘法算式所表示的意
求几个相同加数的和,用乘法计算比较简单。一道乘法算式表示的就是几个相同加数连加的和。如:
4×5表示5个4相加或4个5相加。
5、加法写成乘法时,加法的和与乘法的积相同。
6、乘法算式中,两个乘数交换位置,积不变。
7、算式各部分名称及计算公式。
乘法:乘数×乘数=积
加法:加数+加数=和
和—加数=加数
减法:被减数—减数=差
被减数=差+减数
减数=被减数—差
8、在9的乘法口诀里,几乘9或9乘几,都可看作几十减几,其中“几”是指相同的数。
如:1×9=10—1 9×5=50—5
9、看图,写乘加、乘减算式时:
乘加:先把相同的部分用乘法表示,再加上不相同的部分。
乘减:先把每一份都算成相同的,写成乘法,然后再把多算进去的减去。
计算时,先算乘,再算加减。
如:加法:3+3+3+3+2=14
乘加:3×4+2=14
乘减:3×5-1=14
10、“几和几相加”与“几个几相加”有区别求几和几相加,用几加几;
如:求4和3相加是多少?
用加法(4+3=7)求几个几相加,用几乘几。
如:求4个3相加是多少?(3+3+3+3=12或3×4=12或4×3=12)
补充:几和几相乘,求积?用几×几。
如:2和4相乘用2×4=82个
乘数都是几,求积?用几×几。
如:2个8相乘用8×8=6411、
一个乘法算式可以表示两个意义,
如“4×2”既可以表示“4个2相加”,也可以表示“2个4相加”。
“5+5+5”写成乘法算式是(3×5=15)或(5×3=15),都可以用口诀(三五十五)来计算,表示(3)个(5)相加3×5=15读作:3乘5等于15。5×3=15读作:5乘3等于15
03
三年级
第一单元 时、分、秒
1、钟面上有3根针,它们是(时针)、(分针)、(秒针),其中走得最快的是(秒针),走得最慢的是(时针)。(时针最短,秒针最长)
2、钟面上有(12)个数字,(12)个大格,(60)个小格;每两个数间是(1)个大格,也就是(5)个小格。
3、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是( 1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。
4、时针走1大格,分针正好走(1)圈,分针走1圈是(60)分,也就是(1)小时。时针走1圈,分针要走(12)圈。
5、分针走1小格,秒针正好走(1)圈,秒针走1圈是(60)秒,也就是(1)分钟。
6、时针从一个数走到下一个数是(1小时)。分针从一个数走到下一个数是(5分钟)。秒针从一个数走到下一个数是(5秒钟)。
7、公式。(每两个相邻的时间单位之间的进率是60)
1时=60分 1分=60秒 60分=1时 60秒=1分
第二、四单元 万以内的加法和减法
1、认识整千数(记忆:10个一千是一万)
2、读数和写数(读数时写汉字 写数时写阿拉伯数字)
①一个数的末尾不管有一个0或几个0,这个0都不读。
②一个数的中间有一个0或连续的两个0,都只读一个0。
3、数的大小比较:
①位数不同的数比较大小,位数多的数大。
②位数相同的数比较大小,先比较这两个数的最高位上的数,如果最高位上的数相同,就比较下一位,以此类推。
4、求一个数的近似数:
记忆:看最位的后面一位,如果是0-4则用四舍法,如果是5-9就用五入法。
5、最大的几位数和最小的几位数
最大的一位数是9,最小的一位数是0.
最大的二位数是99,最小的二位数是10
最大的三位数是999,最小的三位数是100
最大的四位数是9999,最小的四位数是1000
最大的三位数比最小的四位数小1。
6、被减数是三位数的连续退位减法的运算步骤:
① 列竖式时相同数位一定要对齐;
② 减法时,哪一位上的数不够减,从前一位退1,在本位上加上10再减;如果前一位是0,则再从前一位退1。
7、两个三位数相加的和:可能是三位数,也有可能是四位数。
8、公式:被减数=减数+差
和=加数+另一个加数
减数=被减数-差
加数=和-另一个加数
差=被减数-减数
第三单元 测量
1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。
2、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。
3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。
4、在计算长度时,只有相同的长度单位才能相加减。
5、长度单位的关系式有:( 每两个相邻的长度单位之间的进率是10 )
① 进率是10:1米=10分米,
1分米=10厘米, 1厘米=10毫米,
② 进率是100:
1米=100厘米, 1分米=100毫米,
③ 进率是1000:1千米=1000米,
6、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用( 克 )做单位;称一般物品的质量,常用(千克 )做单位;计量较重的或大宗物品的质量,通常用( 吨 )做单位。
小技巧:在“吨”与“千克”的换算中,把吨换算成千克,是在数字的末尾加上3个0; 把千克换算成吨,是在数字的末尾去掉3个0。
7、相邻两个质量单位进率是1000。
1吨=1000千克 1千克=1000克
1000千克= 1吨 1000克=1千克
04
四年级
第一单元 大数的认识
1.10个一万是十万,10个十万是一百万,10个一百万是一千万,10个一千万是一亿。
相邻两个计数单位之间的进率是“十” ,这种计数方法叫做十进制计数法。
特别注意:计数单位与数位的区别。
2、在用数字表示数的时候,这些计数单位要按照一定的顺序排列起来,它们所占的位置叫做数位。
3、位数:一个数含有几个数位,就是几位数,如652100是个六位数。
4、按照我国的计数习惯,从右边起,每四个数位是一级。
6、亿以上数的读法:
① 先分级,从高位开始读起。先读亿级,再读万级,最后读个级。
② 亿级的数要按照个级的数的读法来读,再在后面加上一个“亿”字。万级的数要按照个级的数的读法来读,再在后面加上一个“万”字。
③ 每级末尾不管有几个0,都不读。其他数位有一个“0”或连续几个“0”,都只读一个“0”。
7、亿以上数的写法:
① 从最高位写起,先写亿级,再写万级,最后写个级。
② 哪个数位上一个单位也没有,就在那个数位上写0。
8、比较数的大小:
① 位数不同的两个数,位数多的数比较大。
② 位数相同的两个数,从最高位开始比较。
9、求近似数:
省略万位后面的尾数,要看千位上的数;省略亿位后面的尾数,要看千万位上的数。
这种求近似数的方法叫“四舍五入法”,是“舍”还是“入”,要看省略的尾数最高位上的数是小于5 还是等于或大于5 。小于5就舍去尾数,等于或大于5就向前一位进1,再舍去尾数。
10、表示物体个数:1,2 ,3, 4, 5 ,6 ,7 ,8 ,9 ,10, ……. 都是自然数。一个物体也没有,用0来表示, 0也是自然数。所有的自然数都是整数。
11、最小的自然数是0,没有最大的自然数,自然数的个数是无限的。
12、每相邻的两个计数单位之间的进率都是十,这种计数方法叫做十进制计数法。
第二单元 公顷和平方千米
1、边长是100米的正方形面积是1公顷。
1公顷 = 10000平方米
2、边长是1千米的正方形面积是1平方千米。
1平方千米 = 1000000平方米
1平方千米=100公顷
3、从大单位变到小单位,乘以进率。
从小单位变到大单位,除以进率。
4、国土面积(中国、省、市、区等)、海洋面积等特别大的面积适合用平方千米。如:香港特别行政区的面积约1100(平方千米)。
广场、校园等稍大土地面积适合用公顷。如天安门广场的占地面积大约是44(公顷);
操场、教室等较小的面积适合用平方米。如一个教室的面积约60(平方米);
5、长方形面积 = 长 × 宽
正方形面积 = 边长 × 边长
第三单元 角的度量
1、直线、射线、线段
直线:可以向两端无限延伸,没有端点。
射线:可以向一端无限延伸,只有一个端点。
线段:不能延伸,有两个端点,线段是直线的一部分。
2、直线、射线与线段有什么联系和区别?
①直线和射线都可以无限延伸,因此无法量出长短。
②线段可以量出长度。
3.从一点引出两条射线所组成的图形叫做角。
4、角的计量单位是“度”,用符号“ °”表示。
将圆平均分成360 份,每一份所对的角的大小是l 度,记做1°。
5、角的大小与角两边的长短没关系。角的大小与叉开的大小有关系,叉开得越大,角越大。
6、度量角的工具叫量角器。
7、量角的步骤:
①把量角器的中心与角的顶点重合,0°刻度线与角的一条边重合。
②角的另一条边所对的量角器上的刻度,就是这个角的度数。
8、角可以看作由一条射线绕着它的端点,从一个位置旋转到另一个位置所成的图形。
9、一条射线绕它的端点旋转半周,形成的角叫做平角。1平角=180°
10、一条射线绕它的端点旋转一周,形成的角叫做周角。1周角=360°
1周角=2平角=4直角 1直角=90°
11、小于90度的角叫做锐角,大于90度而小于180度的角叫做钝角。
锐角<直角<钝角<平角<周角
12、画角的步骤:
(1)画一条射线,使量角器的中心和射线的端点重合,0°刻度线和射线重合。
(2)在量角器上找到要画的角的度数(如65°)的地方,并点一个点。
(3)以画出的射线的端点为端点,通过刚画的点再画一条射线。
13、经过一点可以画无数条直线;经过两个点,只能画一条直线。
14、用三角板可以画的角:
180°165°150°135°120°105°90°75°60°45°30°15°
第四单元 三位数乘两位数
1、三位数乘两位数的笔算方法:
先用两位数个位上的数去乘三位数,积的末位和两位数的个位对齐;再用两位数十位上的数去乘三位数,积的末位和两位数的十位对齐;最后把两次乘得的积加起来。
2、积的变化规律:
一个因数不变,另一个因数乘(或除以)几(0除外),积也乘(或除以)几。
3、每件商品的价钱,叫做单价;买了多少,叫做数量;一共用的价钱,叫做总价。
单价 ×数量 = 总价
单价=总价 ÷ 数量
4、一共行了多长的路,叫做路程;每小时(或每分钟等)行的路程,叫做速度;行了几小时(或几分钟等),叫做时间。
速度 ×时间= 路程
速度=路程 ÷ 时间
时间=路程 ÷ 速度
5、速度单位通常有:千米/时、米/分、米/秒等。
05
五年级
第一单元 小数乘法
1、小数乘法的计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。乘得的积小数位数不够时,就在积的前面用0来补足,再点小数点。
2、计算结果中,小数部分末尾的0要去掉,把小数化简。
3、规律:一个数(0除外)乘大于1的数,积比原来的数大。一个数(0除外)乘小于1的数,积比原来的数小。一个数(0除外)乘1,积等于原来的数。
4、求近似数的方法有三种:⑴四舍五入法;⑵进一法;⑶去尾法。
5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。
6、小数四则运算顺序跟整数是一样的。乘法交换律、乘法结合律、乘法分配律对于小数乘法同样适用。
7、运算定律和性质加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)减法:减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c除法:除法性质:a÷b÷c=a÷(b×c)
第二单元 位置
1、用数对表示位置时,一般列数在前面,行数在后面。
第三单元 小数除法
1、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
2、小数除以小数的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“小数除以整数的计算方法”进行计算。
3、如果被除数的位数不够,在被除数的末尾用0补足。
4、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。求商的近似数时,近似数的末尾的0不能去掉。
5、除法中的变化规律:
(1)商不变:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。
(2)除数不变:被除数扩大,商随着扩大。
(3)被除数不变:除数缩小,商扩大。
6、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
7、一个循环小数的小数部分,依次不断重复出现的数字,叫做循环节。
8、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。
第四单元 可能性
1. 可能性
事件的发生有确定性和不确定性,确定的事件用“一定”或“不可能”来描述,不确定的事件用“可能”来描述。
2. 事件发生可能性的大小
可能性的大小与数量的多少有关,相同条件下,在总数中所占数量越多,可能性越大;所占数量越少,可能性越小。
06
六年级
第一单元 分数乘法
(一)分数乘法意义:
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)
(二)分数乘法计算法则:
1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)
(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)
(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:
一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b>1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b<1时,c<a(b≠0)。
一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b=1时,c=a。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算
1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(五)倒数的意义:乘积为1的两个数互为倒数。
1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)
2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。例如:a×b=1,则a、b互为倒数。
3、求倒数的方法:
①求分数的倒数:交换分子、分母的位置。
②求整数的倒数:整数分之1。
③求带分数的倒数:先化成假分数,再求倒数。
④求小数的倒数:先化成分数再求倒数。
4、1的倒数是它本身,因为1×1=1。
0没有倒数,因为任何数乘0积都是0,且0不能作分母。
5、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。
假分数的倒数小于或等于1。带分数的倒数小于1。
(六)分数乘法应用题——用分数乘法解决问题
1、求一个数的几分之几是多少?(用乘法)
已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。
2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。
3、什么是速度?
速度是单位时间内行驶的路程。
速度=路程÷时间
时间=路程÷速度
路程=速度×时间
单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。
4、求甲比乙多(少)几分之几?
多:(甲-乙)÷乙
少:(乙-甲)÷乙
第二单元 位置与方向(二)
1、什么是数对?
数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右为列数和行数,即“先列后行”。
数对的作用:确定一个点的位置。经度和纬度就是这个原理。
2、确定物体位置的方法:
(1)先找观测点;(2)再定方向(看方向夹角的度数);(3)最后确定距离(看比例尺)。
描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。
位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。
相对位置:东-西;南-北;南偏东-北偏西。
第三单元 分数的除法
一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。
1、被除数÷除数=被除数×除数的倒数。
2、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。
3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
4、被除数与商的变化规律:
①除以大于1的数,商小于被除数:a÷b=c,当b>1时,c<a。
②除以小于1的数,商大于被除数:a÷b=c,当b<1时,c>a。(a≠0,b≠0)
③除以等于1的数,商等于被除数:a÷b=c,当b=1时,c=a。
三、分数除法混合运算
1、混合运算用梯等式计算,等号写在第一个数字的左下角。
2、运算顺序:
①连除:同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。加、减法为一级运算,乘、除法为二级运算。
②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。
(a±b)÷c=a÷c±b÷c
第四单元 比
比:两个数相除也叫两个数的比
1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
连比,如:3:4:5读作:3比4比5。
2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20=12÷20=0.6
12∶20读作:12比20。
区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
4、化简比:化简之后结果还是一个比,不是一个数。
(1)用比的前项和后项同时除以它们的最大公约数。
(2)两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。
(3)两个小数的比,向右移动小数点的位置,也是先化成整数比。
5、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
6、比和除法、分数的区别:
除法:被除数除号(÷) 除数(不能为0) 商不变性质 除法是一种运算。
分数:分子分数线(—)分母(不能为0) 分数的基本性质 分数是一个数。
比:前项比号(∶) 后项(不能为0) 比的基本性质 比表示两个数的关系。
商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
分数除法和比的应用
1、已知单位“1”的量用乘法。
2、未知单位“1”的量用除法。
3、分数应用题基本数量关系(把分数看成比)
(1)甲是乙的几分之几?
甲=乙×几分之几
乙=甲÷几分之几
几分之几=甲÷乙
(2)甲比乙多(少)几分之几?
4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。
5、画线段图:
(1)找出单位“1”的量,先画出单位“1”,标出已知和未知。
(2)分析数量关系。
(3)找等量关系。
(4)列方程。
两个量的关系画两条线段图,部分和整体的关系画一条线段图。