红外光谱官能团对照表,为什么红外,紫外叫吸收光谱?
红外光谱红外光谱官能团对照表,通常是红外吸收光谱,检测的是分子吸收电磁辐射后引起的振动能级跃迁。分子中的特征官能团的特征振动对应于特定的红外吸收光谱位置。红外光谱一般用微米(m)或者波数(cm^-1)为单位,因而可以用红外光谱的吸收峰的位置来鉴别待测分子结构。通常检测的是中红外光谱区,400~4000cm^-1.紫外光谱,一般是紫外-可见吸收光谱,检测的是分子吸收电磁辐射后引起的电子态的跃迁。紫外-可见吸收光谱反映的是分子的电子能级结构,可以用来判断分子的共轭性质(分子的共轭程度越大,光谱中谱峰会红移,也就是往长波方向移动)。紫外-可见吸收光谱一般用纳米(nm)为单位。通常的检测范围200~900nm。
一、功能不同
1、红外可以实现数据的无线传输。自1800年被发现以来,得到很普遍的应用,如红外线鼠标,红外线打印机,红外线键盘等等。
2、远红外线具有显著的温控效应和共振效应,它易被物体吸收并转化为物体的内能。远红外线被人体吸收后,可使体内水分子产生共振,使水分子活化,增强其分子间的结合力,从而活化蛋白质等生物大分子,使生物体细胞处于最高振动能级。
二、产生不同
1、产生远红外线主要方法选择热交换能力强、能放射特定波长远红外线的材料,然后加工制造成各种形式、各种用途的的产品。远红外线纤维产品所采用的材料能有效放射5.6um-15um的远红外线,占整体波长90%以上。
2、化合物分子吸收特定波长的红外光产生分子振动能级的跃迁,从而产生红外吸收光谱。不同种类的有机化合物,因为具有不同的官能团,因此能够吸收不同波长的红外光,在红外光谱图中呈现不同的特征吸收峰。根据红外光谱图中特征吸收峰的出现与否,既可判断有机化合物的结构特征。
三、相关应用不同
1、红外
1)安防监控领域。
2)汽车夜视系统。
3)医疗器械行业。
4)家庭电子行业。
5)通讯领域。
2、远红外
应用于生活中高温杀菌,红外线夜视仪,监控设备,手机的红外口,宾馆的房门卡,汽车、电视机的遥控器、洗手池的红外感应,饭店门前的感应门,等等。
有机官能团定量分析分为化学法和仪器法。化学法是利用官能团的特征化学反应,通过测量试剂的消耗量或反应产物之一的生成量来进行的。
仪器法
紫外-可见分光光度法 凡分子中含有共轭不饱和键或芳环的有机化合物,在紫外区(200~400纳米)均有特征吸收。
红外光谱法 有机官能团都有特征的红外吸收
电化学分析法 极谱法和伏安法、安培滴定法、电位分析法、电导分析法和库仑滴定法已广泛采用,有的已成为常规分析手段。
质谱法,核磁共振法,色谱法。
能得到一些特征官能团结果。
此外,如果待测物质是较纯净的。可以直接对照标准谱库,确定主要成分就是么么化合物。
如果待测物不是纯净的,也能由一些特征官能团判断可能含有那些物质。
红外光谱 (Infrared Spectroscopy, IR) 的研究始于 20 世纪初,自1940 年红外光谱仪问世,红外光谱在有机化学研究中广泛应用。新技术 (如发射光谱、光声光谱、色红联用等) 出现,使红外光谱技术得到发展。可以用来检测物质具有的化学键及官能团,可以研究分子的结构和化学键,如力常数的测定和分子对称性等,利用红外光谱方法可测定分子的键长和键角,并由此推测分子的立体构型。根据所得的力常数可推知化学键的强弱,由简正频率计算热力学函数等。分子中的某些基团或化学键在不同化合物中所对应的谱带波数基本上是固定的或只在小波段范围内变化,因此许多有机官能团例如甲基、亚甲基、羰基,氰基,羟基,胺基等等在红外光谱中都有特征吸收,通过红外光谱测定,人们就可以判定未知样品中存在哪些有机官能团,这为最终确定未知物的化学结构奠定了基础。