tan三角函数公式,cos与tan的万能公式?
万能三角函数公式tan三角函数公式:
1、(sinα)^2+(cosα)^2=1
2、1+(tanα)^2=(secα)^2
3、1+(cotα)^2=(cscα)^2
对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC
设tan(A/2)=t
sinA=2t/(1+t^2) (A≠2kπ+π,k∈Z);
tanA=2t/(1-t^2) (A≠2kπ+π,k∈Z);
cosA=(1-t^2)/(1+t^2) (A≠2kπ+π k∈Z) ;
就是说sinA.tanA.cosA都可以用tan(A/2)来表示,当要求一串函数式最值的时候,就可以
用万能公式,推导成只含有一个变量的函数。
两角和公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
[编辑本段]倍角公式
tan2A = 2tanA/(1-tan^2 A)
Sin2A=2SinA•CosA
Cos2A = Cos^2 A–Sin^2 A
=2Cos^2 A—1
=1—2sin^2 A
[编辑本段]三倍角公式
sin3A = 3sinA-4(sinA)^3;
cos3A = 4(cosA)^3 -3cosA
tan3a = tan a · tan(π/3+a)· tan(π/3-a)
[编辑本段]半角公式
sin(A/2) = √{(1–cosA)/2}
cos(A/2) = √{(1+cosA)/2}
tan(A/2) = √{(1–cosA)/(1+cosA)}
cot(A/2) = √{(1+cosA)/(1-cosA)}
tan(A/2) = (1–cosA)/sinA=sinA/(1+cosA)
[编辑本段]和差化积
sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]
sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]
cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]
cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]
tanA+tanB=sin(A+B)/cosAcosB
[编辑本段]积化和差
sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)]
cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]
sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]
cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]
[编辑本段]诱导公式
sin(-a) = -sin(a)
cos(-a) = cos(a)
sin(π/2-a) = cos(a)
cos(π/2-a) = sin(a)
sin(π/2+a) = cos(a)
cos(π/2+a) = -sin(a)
sin(π-a) = sin(a)
cos(π-a) = -cos(a)
sin(π+a) = -sin(a)
cos(π+a) = -cos(a)
tgA=tanA = sinA/cosA
[编辑本段]万能公式
sin(a) = [2tan(a/2)] / {1+[tan(a/2)]^2}
cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]^2}
tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}
[编辑本段]其它公式
a·sin(a)+b·cos(a) = [√(a^2+b^2)]*sin(a+c) [其中,tan(c)=b/a]
a·sin(a)-b·cos(a) = [√(a^2+b^2)]*cos(a-c) [其中,tan(c)=a/b]
1+sin(a) = [sin(a/2)+cos(a/2)]^2;
1-sin(a) = [sin(a/2)-cos(a/2)]^2;;
[编辑本段]其他非重点三角函数
csc(a) = 1/sin(a)
sec(a) = 1/cos(a)
[编辑本段]双曲函数
sinh(a) = [e^a-e^(-a)]/2
cosh(a) = [e^a+e^(-a)]/2
tg h(a) = sin h(a)/cos h(a)
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)= sinα
cos(2kπ+α)= cosα
tan(2kπ+α)= tanα
cot(2kπ+α)= cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)= -sinα
cos(π+α)= -cosα
tan(π+α)= tanα
cot(π+α)= cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)= -sinα
cos(-α)= cosα
tan(-α)= -tanα
cot(-α)= -cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)= sinα
cos(π-α)= -cosα
tan(π-α)= -tanα
cot(π-α)= -cotα
公式五:
利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)= -sinα
cos(2π-α)= cosα
tan(2π-α)= -tanα
cot(2π-α)= -cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)= cosα
cos(π/2+α)= -sinα
tan(π/2+α)= -cotα
cot(π/2+α)= -tanα
sin(π/2-α)= cosα
cos(π/2-α)= sinα
tan(π/2-α)= cotα
cot(π/2-α)= tanα
sin(3π/2+α)= -cosα
cos(3π/2+α)= sinα
tan(3π/2+α)= -cotα
cot(3π/2+α)= -tanα
sin(3π/2-α)= -cosα
cos(3π/2-α)= -sinα
tan(3π/2-α)= cotα
cot(3π/2-α)= tanα
(以上k∈Z)
这个物理常用公式我费了半天的劲才输进来,希望对大家有用
A·sin(ωt+θ)+ B·sin(ωt+φ) =
√{(A^2 +B^2 +2ABcos(θ-φ)} • sin{ ωt + arcsin[ (A•sinθ+B•sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} }
√表示根号,包括{……}中的内容