求逆矩阵可以用列变换吗(详解)
摘要求逆矩阵可以用列变换吗?1、求逆矩阵不可以用列变换,因为通过初等行变换是在原矩阵右边拼接一个同阶的单位矩阵,通过初等列变换是在原矩阵下方拼接一个同阶的单位矩阵。2、设A是数域
1、求逆矩阵不可以用列变换,因为通过初等行变换是在原矩阵右边拼接一个同阶的单位矩阵,通过初等列变换是在原矩阵下方拼接一个同阶的单位矩阵。
2、设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得:AB=BA=E,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。
等价标准型怎么求,单位矩阵
1、标准型矩阵B可以由A经过一系列初等变换得到
2、经过多次变换以后,得到一种最简单的矩阵,就是这个矩阵的左上角是一个单位矩阵,其余元素都是0,那么这个矩阵就是原来矩阵的等价标准型。
3、如果矩阵B可以由A经过一系列初等变换得到 那么矩阵A与B是等价的。
经过多次变换以后,得到一种最简单的矩阵,就是这个矩阵的左上角是一个单位矩阵,其余元素都是0,那么这个矩阵就是原来矩阵的等价标准型。
逆矩阵怎么求原矩阵
1、将一n阶可逆矩阵A和n阶单位矩阵I写成一个nX2n的矩阵对B施行初等行变换,即对A与I进行完全相同的若干初等行变换,目标是把A化为单位矩阵。当A化为单位矩阵I的同时,B的右一半矩阵同时化为了A的逆矩阵。
2、如果矩阵A和B互逆,则AB=BA=I。由条件AB=BA以及矩阵乘法的定义可知,矩阵A和B都是方阵。再由条件AB=I以及定理“两个矩阵的乘积的行列式等于这两个矩阵的行列式的乘积”可知,这两个矩阵的行列式都不为0。
逆矩阵怎么求列子
1、初等行变换:对(AE)施行初等行变换,把前面的A化为单位矩阵,则后面的E就化为了A^-1。
2、伴随矩阵法:如果A可逆,则A^-1=1/|A|*(A^*)其中|A|是A的行列式,A^*是A的伴随矩阵。
3、如果A是二阶矩阵,倒是有简便快速的方法:主对角交换,副对角取反,再除行列式。这其实仍是伴随矩阵法。